Research of Standard integrated enterprise management systems – systems architecture (SOA architecture, microservices, cloud-based enterprise management systems), planning algorithms (production planning and scheduling, demand forecasting, supply), business entity databases (schema matching, semantic data warehouses), operational processes (enterprise and manufacturing process modeling, simulation and optimization) and research on related industrial IT solutions (Industry 4.0, IIoT).
SAP R/3 system and server • SAP Business One system • QAD Enterprise system • ABAS ERP
FIKP
Modelling of distributed large-scale IT systems, research and development of development tools, measurement and verification of software quality parameters. Development of an Immutable metamodelling and translation framework. High level management of distributed IT and Cloud systems using unified frameworks. Well-defined alignment of multiple standards, models, approaches to support software quality, and to investigate and support the specificities of software development in a multimodal (multiple quality approaches simultaneously) environment.
Superman supercomputer • Batman supercomputer
IoTAC; Horizon 2020 • Urban Mobility KIC Covid19 call • VKE • EFOP
TMMi Foundation • Smartesting Solutions& Services • Pressmen Kft. • Generali Biztosító Zrt. • Prolan Irányítástechikai Zrt.
Creating textual and visual domain-specific languages. Metamodeling and model processing and their validation. Efficient model definition and transformation. Multilevel and multi-layer metamodeling based on the Dynamic Multi-Layer Algebra framework. Model-based software development methodologies. Building compilers and graph transformations.
The research team has been researching mainly in the field of multilevel metamodeling in recent years. In the past, many ideas have been born in this field by other researchers and it has been difficult to compare these ideas. The research team is involved in the process of unifying variants in the field of multilevel metamodeling. In the spring of 2020, we began working with the group on a general approach (Multi-Level Modeling Playground, MLMP) that allows for the emulation and even combination of solutions using a single system. The method has been published in one of the most important journals in the field, and its implementation is in an experimental phase.
EFOP
University of Agder
Our main area is the design of resilient critical systems, processes and platforms, including cyber-physical and distributed ledger systems. Our main competencies are model-based design, analysis and verification.
EU Digital: EDGE-Skills • EU Digital: SME4DD • EIT Digital: ProtectME • ITEA4 EUREKA: OpenSCALING • H2020 RISE: ADVANCE • VKE: Prolan • MTA Lendület
University of Firenze • Univ. Of Coimbra • NASA JPL • McGill University • Linköping University
thyssenkrupp • Ericsson • IncQuery Labs • Knorr-Bremse • Prolan
The aim of the research group is to develop procedures that rely on wearable physiological measuring instruments, mostly to monitor and make learning more effective. Research and implementation of virtual and augmented reallity applications is also in focus, within industrial application areas.
Google Pixel devices • DayDream VR • Samsung Gear VR devices, controllers • Mobil EEG (eMotive) • Hololens
Stanford University
Audi • Academy of Music
Our research group works in 3 domains within the field of security and privacy:
In domain (1), we work on the security of industrial automation and control systems, security of modern vehicles and intelligent transport systems, and security of IoT systems and applications. The common in these topics is that attacks originating from cyberspace may have physical consequences, resulting in equipment or environmental damage, or potentially even loss of human life, and therefore, security is an important requirement. In domain (2), we study how machine learning can be used to solve security and privacy problems, and also how machine learning–based systems may be exploited maliciously. More specifically, we focus on the security of federated learning algorithms and the problem of adversarial examples (e.g., in machine learning-based malware detection). In domain (3), we apply game theoretic models to study the incentive structures in different systems, and the cause of security and privacy problems. Besides the domains mentioned above, we have strong competency in applied cryptography, privacy enhancing technologies, malware analysis, reverse engineering, and secure operation of networks and network-based systems, including IT infrastructure automation.
IoT devices, PLCs, industrial devices, servers • PIRAMID ICS/SCADA security testbed
PrOTectME (EIT Digital) • H2020 MELLODDY • H2020 SECREDAS • H2020 SETIT
NTNU, Trondheim, Norway • KU Leuven, Belgium • INRIA Rhones-Alpes, France • University of California, Irvine, CA • New York Institute of Technology
Microsec Zrt. • Tresorit Kft. • Ukatemi Technologies Kft.
The Applied Computer Science group’s research interests include software development methods, efficient and maintainable development techniques, and testing. Other research areas include scalable software architectures and environments, and applied artificial intelligence, machine learning and big data, and business intelligence solutions. This is complemented by the area of smart data collection, which is of particular importance for the design and implementation of large-scale systems.
TODO
MI Nemzeti Labor • Autonóm Nemzeti Labor • TKP
University of Dresden • University of Helsinki
Sagemcom • Nokia
Kombinatorikus algoritmusok. Klasszikus és kvantumalgoritmusok, bonyolultságelméleti és paraméteres bonyolultságos megközelítések. Ezen belül pl. társadalmi választások, fair hozzárendelések, stabil és népszerű párosítások, hálózatok megbízhatóságának vizsgálata kombinatorikus és játékelméleti módszerekkel. Különböző kvantumos megközelítések (algoritmus, QUBO, kvantumbolyongás) vizsgálata. Logikai és deklaratív programozás.
Számos eredményünk született a fair hozzárendelés területén: többek között bizonyítottuk, hogy 3 ágens esetén az irigység-mentes allokáció keresése NP-teljes feladat (ezzel egy 5 évig nyitott kérdést megválaszolva), ugyanakkor arányos allokáció keresése polinom idejű algoritmussal megoldható; ez utóbbi kérdést általános számú ágens esetén is körbejártuk, feltérképeztük annak paraméteres bonyolultságát és approximálhatóságát. Vizsgáltuk a stabil párosítás probléma sok-paraméteres bonyolultságát abban az esetben, ahol bizonyos ágensek fedését írhatjuk elő: öt vizsgált paraméter minden kombinációjára sikerült a probléma bonyolultságát meghatározni. Foglalkoztunk még a népszerű fenyvesek problémájával is, hatékony egzakt és közelítő algoritmusok megadása mellett számos nehézségi eredményt is bizonyítottunk.
Bizonyítottunk egy olyan új eredményt, aminek segítségével a hálózatok megbízhatóságának játékelméleti eszközökkel való mérésére vonatkozó korábban ismert, matroidelméleti módszereket sikerült a greedoidoknak egy, a matroidoknál bővebb osztályára kiterjeszteni.
Kvantumalgoritmusok körében vizsgáltuk a Fourier-transzformáció alkalmazásanak határait bizonyos algebrai feladatokra. Foglalkoztunk a kvantumalgoritmusok egy fajta használatával a gépi tanulásban, megmutatva, hogy egy mások által javasolt módszer nem sok előnyt ad a klasszikus eljárásokhoz képest. Vizsgáljuk, hogyan lehet klasszikus problémákat a D-Wave (korábbi) kvantumszámítógépébe beágyazni, az ott használt QUBO (quantum unconstrained binary optimization) feladatra átfordítani.
OTKA
Hamburg University of Technology • University of Tübingen • Université Paris Diderot – Paris, Centre for Quantum Technologies • University of Singapore